Limnol. Oceanogr., 44(6), 1999, 1530–1539

نویسندگان

  • Michelle A. Baker
  • Clifford N. Dahm
  • Maurice Valett
چکیده

An in situ acetate injection was used to determine the influence of labile dissolved organic carbon (DOC) availability on microbial respiration in the hyporheic zone of a headwater stream. We added bromide as a conservative tracer and acetate as an organic substrate to the hyporheic zone of Rio Calaveras, New Mexico, via an injection well. Tracer was observed in four of eight capture wells. Three of the four wells showed increases in bromide without concurrent increases in acetate concentration, suggesting 100% acetate retention. One well had 38% acetate retention. Pore velocity and acetate retention were negatively correlated, suggesting hydrologic control of acetate retention. Acetate did not significantly sorb to the sandy hyporheic sediments at this site, indicating biological consumption of acetate. Acetate addition stimulated total CO2 production along monitored flowpaths and led to changes in solutes associated with microbial terminal electron-accepting processes (TEAPs). Dissolved oxygen (DO), nitrate, and sulfate significantly decreased, and ferrous iron and methane significantly increased compared to background concentrations in most wells. These results support the hypothesis that microbial respiration in the hyporheic zone is limited by labile DOC availability. Furthermore, we have shown that a suite of metabolic processes, from aerobic respiration to methanogenesis, cooccur and that anaerobic processes dominate heterotrophic metabolism in the hyporheic zone of Rio Calaveras. In the past 10–15 yr, the importance of the hyporheic zone (i.e., subsurface water containing at least 10% surface water, sensu Triska et al. 1989) to lotic biogeochemistry and ecology has been documented for streams and rivers worldwide (e.g., Jones and Holmes 1996; Brunke and Gonser 1997; Gibert et al. 1997). Hyporheic sediments are metabolically active, are an important site for organic matter decomposition, and can have a large impact on respiration (i.e., decrease P : R ratios) in measures of whole-stream ecosystem metabolism (Grimm and Fisher 1984; Mulholland et al. 1997; Nageli and Uehlinger 1997). Microbial metabolism in the hyporheic zone depends on transport of organic substrates and electron acceptors from the surface stream and/ or nearby groundwater (e.g., Findlay 1995; Jones et al. 1995a). Since subsurface organisms are mostly heterotrophic (Jones et al. 1995b) and require allochthonous organic matter sources, it is commonly hypothesized that microbial metabolism in the hyporheic zone is limited by organic matter availability (e.g., Jones 1995). The relationship between hyporheic zone aerobic respiration and organic matter availability has been examined using sediment microcosms (e.g., Pusch and Schwoerbel 1994; Jones 1995; Fuss and Smock 1 Present address: Utah State University, Department of Biology, 5305 Old Main Hill, Logan, Utah 84322-5305. 2 Present address: Virginia Polytechnic Institute and State University, Department of Biology, Blacksburg, Virginia 24061.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limnol. Oceanogr., 44(4), 1999, 1184

that I can easily take to sea and consult as an authoritative reference. This book is not just an updated version of the Clay and Medwin predecessor—it is much more comprehensive, containing a good blend of theory and hard-won data from measurements made at sea and in the lab. The fact that its list price is less than the current price of the earlier book is an unexpected bonus! I strongly reco...

متن کامل

Limnol. Oceanogr., 44(2), 1999, 447–454

Geophysical and ecological dynamics within lakes of the McMurdo Dry Valleys, Antarctica, are controlled by the presence of permanent ice covers. Despite the importance of the permanent ice cover, there have been no studies that have examined specific couplings between changes in the geophysical properties of the ice covers and dynamic ecological processes within the underlying water column. Her...

متن کامل

Measuring the ecological significance of microscale nutrient patches

parative rapid ammonium uptake by four species of marine phytoplankton. Limnol. Oceanogr. 27: 814-827. -, J. J. MCCARTHY, AND D. G. PEAVEY. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210-215. HEALEY, F. P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 5: 281-286. HUTCHINSON, G. E...

متن کامل

Limnol. Oceanogr., 44(6), 1999, 1498–1508

There is an apparent mismatch between the high carbon demand of seals and seabirds breeding on the subantarctic island of South Georgia and the overall low primary production measured in the waters that surround the island. However, average phytoplankton production values may not be completely representative, and local systems may exist where primary production is considerably higher. Here, we ...

متن کامل

Limnol. Oceanogr., 44(3), 1999, 699–702

Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m22 yr21 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999